45 research outputs found

    RESOURCE DIMENSIONING AND MANAGEMENT FOR SOLAR POWERED CELLULAR BASE STATIONS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Comprehensive Review of the COVID-19 Pandemic and the Role of IoT, Drones, AI, Blockchain, and 5G in Managing its Impact

    Get PDF
    The unprecedented outbreak of the 2019 novel coronavirus, termed as COVID-19 by the World Health Organization (WHO), has placed numerous governments around the world in a precarious position. The impact of the COVID-19 outbreak, earlier witnessed by the citizens of China alone, has now become a matter of grave concern for virtually every country in the world. The scarcity of resources to endure the COVID-19 outbreak combined with the fear of overburdened healthcare systems has forced a majority of these countries into a state of partial or complete lockdown. The number of laboratory-confirmed coronavirus cases has been increasing at an alarming rate throughout the world, with reportedly more than 3 million confirmed cases as of 30 April 2020. Adding to these woes, numerous false reports, misinformation, and unsolicited fears in regards to coronavirus, are being circulated regularly since the outbreak of the COVID-19. In response to such acts, we draw on various reliable sources to present a detailed review of all the major aspects associated with the COVID-19 pandemic. In addition to the direct health implications associated with the outbreak of COVID-19, this study highlights its impact on the global economy. In drawing things to a close, we explore the use of technologies such as the Internet of Things (IoT), Unmanned Aerial Vehicles (UAVs), blockchain, Artificial Intelligence (AI), and 5G, among others, to help mitigate the impact of COVID-19 outbreak.This work was supported by the Qatar National Research Fund (a member of the Qatar Foundation) under Grant NPRP10-1205-160012

    Disaster and Pandemic Management Using Machine Learning: A Survey

    Get PDF
    This article provides a literature review of state-of-the-art machine learning (ML) algorithms for disaster and pandemic management. Most nations are concerned about disasters and pandemics, which, in general, are highly unlikely events. To date, various technologies, such as IoT, object sensing, UAV, 5G, and cellular networks, smartphone-based system, and satellite-based systems have been used for disaster and pandemic management. ML algorithms can handle multidimensional, large volumes of data that occur naturally in environments related to disaster and pandemic management and are particularly well suited for important related tasks, such as recognition and classification. ML algorithms are useful for predicting disasters and assisting in disaster management tasks, such as determining crowd evacuation routes, analyzing social media posts, and handling the post-disaster situation. ML algorithms also find great application in pandemic management scenarios, such as predicting pandemics, monitoring pandemic spread, disease diagnosis, etc. This article first presents a tutorial on ML algorithms. It then presents a detailed review of several ML algorithms and how we can combine these algorithms with other technologies to address disaster and pandemic management. It also discusses various challenges, open issues and, directions for future research

    A novel end-to-end deep convolutional neural network based skin lesion classification framework

    Get PDF
    Background:Skin diseases are reported to contribute 1.79% of the global burden of disease. The accurate diagnosis of specific skin diseases is known to be a challenging task due, in part, to variations in skin tone, texture, body hair, etc. Classification of skin lesions using machine learning is a demanding task, due to the varying shapes, sizes, colors, and vague boundaries of some lesions. The use of deep learning for the classification of skin lesion images has been shown to help diagnose the disease at its early stages. Recent studies have demonstrated that these models perform well in skin detection tasks, with high accuracy and efficiency.Objective:Our paper proposes an end-to-end framework for skin lesion classification, and our contributions are two-fold. Firstly, two fundamentally different algorithms are proposed for segmenting and extracting features from images during image preprocessing. Secondly, we present a deep convolutional neural network model, S-MobileNet that aims to classify 7 different types of skin lesions.Methods:We used the HAM10000 dataset, which consists of 10000 dermatoscopic images from different populations and is publicly available through the International Skin Imaging Collaboration (ISIC) Archive. The image data was preprocessed to make it suitable for modeling. Exploratory data analysis (EDA) was performed to understand various attributes and their relationships within the dataset. A modified version of a Gaussian filtering algorithm and SFTA was applied for image segmentation and feature extraction. The processed dataset was then fed into the S-MobileNet model. This model was designed to be lightweight and was analysed in three dimensions: using the Relu Activation function, the Mish activation function, and applying compression at intermediary layers. In addition, an alternative approach for compressing layers in the S-MobileNet architecture was applied to ensure a lightweight model that does not compromise on performance.Results:The model was trained using several experiments and assessed using various performance measures, including, loss, accuracy, precision, and the F1-score. Our results demonstrate an improvement in model performance when applying a preprocessing technique. The Mish activation function was shown to outperform Relu. Further, the classification accuracy of the compressed S-MobileNet was shown to outperform S-MobileNet.Conclusions:To conclude, our findings have shown that our proposed deep learning-based S-MobileNet model is the optimal approach for classifying skin lesion images in the HAM10000 dataset. In the future, our approach could be adapted and applied to other datasets, and validated to develop a skin lesion framework that can be utilised in real-time

    AI-enabled remote monitoring of vital signs for COVID-19: methods, prospects and challenges

    Get PDF
    The COVID-19 pandemic has overwhelmed the existing healthcare infrastructure in many parts of the world. Healthcare professionals are not only over-burdened but also at a high risk of nosocomial transmission from COVID-19 patients. Screening and monitoring the health of a large number of susceptible or infected individuals is a challenging task. Although professional medical attention and hospitalization are necessary for high-risk COVID-19 patients, home isolation is an effective strategy for low and medium risk patients as well as for those who are at risk of infection and have been quarantined. However, this necessitates effective techniques for remotely monitoring the patients’ symptoms. Recent advances in Machine Learning (ML) and Deep Learning (DL) have strengthened the power of imaging techniques and can be used to remotely perform several tasks that previously required the physical presence of a medical professional. In this work, we study the prospects of vital signs monitoring for COVID-19 infected as well as quarantined individuals by using DL and image/signal-processing techniques, many of which can be deployed using simple cameras and sensors available on a smartphone or a personal computer, without the need of specialized equipment. We demonstrate the potential of ML-enabled workflows for several vital signs such as heart and respiratory rates, cough, blood pressure, and oxygen saturation. We also discuss the challenges involved in implementing ML-enabled techniques

    A blockchain and deep neural networks-based secure framework for enhanced crop protection

    Get PDF
    The problem faced by one farmer can also be the problem of some other farmer in other regions. Providing information to farmers and connecting them has always been a challenge. Crowdsourcing and community building are considered as useful solutions to these challenges. However, privacy concerns and inactivity of users can make these models inefficient. To tackle these challenges, we present a cost-efficient and blockchain-based secure framework for building a community of farmers and crowdsourcing the data generated by them to help the farmers’ community. Apart from ensuring privacy and security of data, a revenue model is also incorporated to provide incentives to farmers. These incentives would act as a motivating factor for the farmers to willingly participate in the process. Through integration of a deep neural network-based model to our proposed framework, prediction of any abnormalities present within the crops and their predicted possible solutions would be much more coherent. The simulation results demonstrate that the prediction of plant pathology model is highly accurate

    Beyond Reality: The Pivotal Role of Generative AI in the Metaverse

    Full text link
    Imagine stepping into a virtual world that's as rich, dynamic, and interactive as our physical one. This is the promise of the Metaverse, and it's being brought to life by the transformative power of Generative Artificial Intelligence (AI). This paper offers a comprehensive exploration of how generative AI technologies are shaping the Metaverse, transforming it into a dynamic, immersive, and interactive virtual world. We delve into the applications of text generation models like ChatGPT and GPT-3, which are enhancing conversational interfaces with AI-generated characters. We explore the role of image generation models such as DALL-E and MidJourney in creating visually stunning and diverse content. We also examine the potential of 3D model generation technologies like Point-E and Lumirithmic in creating realistic virtual objects that enrich the Metaverse experience. But the journey doesn't stop there. We also address the challenges and ethical considerations of implementing these technologies in the Metaverse, offering insights into the balance between user control and AI automation. This paper is not just a study, but a guide to the future of the Metaverse, offering readers a roadmap to harnessing the power of generative AI in creating immersive virtual worlds.Comment: 8 pages, 4 figure

    Fast, Reliable, and Secure Drone Communication: A Comprehensive Survey

    Get PDF
    Drone security is currently a major topic of discussion among researchers and industrialists. Although there are multiple applications of drones, if the security challenges are not anticipated and required architectural changes are not made, the upcoming drone applications will not be able to serve their actual purpose. Therefore, in this paper, we present a detailed review of the security-critical drone applications, and security-related challenges in drone communication such as DoS attacks, Man-in-the-middle attacks, De-Authentication attacks, and so on. Furthermore, as part of solution architectures, the use of Blockchain, Software Defined Networks (SDN), Machine Learning, and Fog/Edge computing are discussed as these are the most emerging technologies. Drones are highly resource-constrained devices and therefore it is not possible to deploy heavy security algorithms on board. Blockchain can be used to cryptographically store all the data that is sent to/from the drones, thereby saving it from tampering and eavesdropping. Various ML algorithms can be used to detect malicious drones in the network and to detect safe routes. Additionally, the SDN technology can be used to make the drone network reliable by allowing the controller to keep a close check on data traffic, and fog computing can be used to keep the computation capabilities closer to the drones without overloading them.The work of Vinay Chamola and Fei Richard Yu was supported in part by the SICI SICRG Grant through the Project Artificial Intelligence Enabled Security Provisioning and Vehicular Vision Innovations for Autonomous Vehicles, and in part by the Government of Canada's National Crime Prevention Strategy and Natural Sciences and Engineering Research Council of Canada (NSERC) CREATE Program for Building Trust in Connected and Autonomous Vehicles (TrustCAV)
    corecore